考研数学强化复习:线性代数重点题型梳理 _考研好的辅导机构

考研数学强化复习:线性代数重点题型梳理 _考研好的辅导机构

考研数学强化复习:线性代数重点题型梳理

  【摘要】在考研数学中,线性代数是数一、数二、数三考生研究生考试的公共内容,占22%(总分150分),考察2个选择题(每题4分,共8分)、1个填空题(每题4分,共8分)、2个解答题(总分22分)。线性代数相对考研数学高数来说,比较简单,要想取得好的成绩,线代争取不丢分。线性代数包含行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型等六个模块,下面耶鲁考研小编结合数学考研大纲,分章节整理分析常考题型,希望对即将开始暑期强化复习的同学有所帮助。

  一、行列式常考题型

  (1)行列式基本概念;

  (2)低价行列式的计算;

  (3)高阶行列式的计算;

  (4)余子式与代数余子式

  二、矩阵常考题型

  (1)计算方阵的幂

  (2)与伴随矩阵相关联的命题

  (3)有关初等变换的命题

  (4)有关逆矩阵的计算与证明

  (5)解矩阵方程

  (6)矩阵秩的计算和证明

  三、向量常考题型

  (1)判定向量组的线性相关性;

  (2)向量组线性相关性问题的证明;

  (3)向量组的线性表示问题;

  (4)向量组的极大线性无关组与向量组的秩;

  (5)过度矩阵与向量的坐标表示(数一考生要求、数二、数三考生不要求)

  四、线性方程组常考题型

  (1)涉及线性方程组理论的矩阵证明;

  (2)线性方程组解得结构与性质;

  (3)齐次线性方程组的基础解系与通解;

  (4)非齐次线性方程组的通解;

  (5)方程组的公共解。

  五、特征值与特征向量常考题型

  (1)求矩阵的特征值与特征向量;

  (2)特征值与特征向量的定义与性质;

  (3)非是对称矩阵的相似对教化;

  (4)是对称矩阵的对教化;

  (5)求矩阵的幂矩阵;

  (6)根据特征值与特征向量反求矩阵;

  (7)有关特征值与特征向量的证明

  六、二次型常考题型

  (1)二次型的概念和性质;

  (2)化二次型为标准型;

  (3)含参数的二次型问题;

  (4)正定二次型的判别与证明问题;

  (5)矩阵的相似与合同

  在线性代数中,矩阵和行列式是研究线性代数问题的基本工具,尤其是矩阵,它是线性代数的灵魂,贯穿整个线性代数学习过程的始终。所以,矩阵是线性代数学习的重中之重。在学习矩阵的过程中,第一,要掌握其性质并灵活运用到有关的计算和证明问题中;第二,要充分结合其它知识点的学习来进一步强化。
 

考研数学强化复习:线性代数重点题型梳理

考研数学强化复习:线性代数重点题型梳理 _考研好的辅导机构